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Abstract—This paper reviews a number of recent develop-
ments in modern Global Navigation Satellite Systems (GNSS)
and surveys the impact these developments are having on
autonomous driving architectures. Since the Defense Advanced
Research Projects Agency (DARPA) Grand Challenge [1] in
2005, both GNSS and autonomous driving have seen substantial
development. As of 2020, Autonomous and Advanced Driver
Assistance Systems (ADAS) now operate on public roads pro-
viding autonomous lane following and basic maneuver capabili-
ties. Furthermore, four independent global satellite navigation
constellations exist (GPS, GLONASS, Galileo, and BeiDou),
delivering modernized signals at multiple civil frequencies. New
ground monitoring infrastructure, mathematical models, and
internet services correct for errors in the GNSS signals at
scale, enabling continent-wide precision. Mass-market automotive
receiver chipsets are available at low Cost, Size, Weight, and
Power (CSWaP). In comparison to 2005, GNSS now delivers
lane-level localization with integrity guarantees and over 95%
availability.

Autonomous driving is not a solved problem. Two prominent
classes of architectures are under heavy development: those
targeted toward Society of Automotive Engineers (SAE) Level
2 assistance systems for highway driving, and SAE level 4
autonomy systems aimed at city driven robo-taxis. We present
archetypal Level 2 and Level 4 architectures, focusing on the
localization subsystem. Based on these autonomous architectures,
we examine how incorporating lane-level GNSS combined with
maps can unlock safe lane-level maneuvers for Level 2 vision-
based systems, and how incorporating precision GNSS can unlock
the robustness required for Level 4 systems.

Index Terms—GPS, GNSS, autonomous vehicles, automated
driving, localization, positioning, integrity

I. INTRODUCTION

LOCALIZATION is a foundational capability of au-
tonomous driving architectures. Knowledge of precise

vehicle location, coupled with highly detailed maps (often
called High Definition (HD) maps), add the context needed
to drive with confidence. To maintain the vehicle within its
lane, highway operation requires knowledge of location at 0.50
meters whereas local city roads require 0.30 meters [2]. The
challenge facing auto makers is meeting the required level
of reliability at 99.999999% [2] to prove system safety. This
allowable failure rate of once in a billion miles represents
Automotive Safety Integrity Level (ASIL) D, the strictest in
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Fig. 1. Key localization performance metrics (bold) with examples (light).
Arrows point to the impact of each metric on key automated driving
metrics. Modern GNSS solutions offer 0.35 m, 95% positioning accuracy
at 99.99999% integrity guarantees with <3 m protection levels. Highway
availability of GNSS is now >95%. Mass market automotive GNSS CSWaP
is <$10 and <10 Watt with a footprint of <0.1 m2. Continent-wide ground
networks enable precision at scale and can support millions of users in real-
world automotive deployments.



automotive [3]. Achieving this for autonomous vehicles has
not yet been demonstrated.

For public acceptance, utility in society, and widespread
deployment, certain criteria must ultimately be met by au-
tonomous driving systems. This has implications for the
performance of localization subsystems. Figure 1 translates
performance metrics in localization to their impact on the
autonomous vehicle system. The metrics that form the Key
Performance Indicators (KPI’s) for localization, are accu-
racy, availability, integrity, continuity, scalability, as well as
Cost, Size, Weight and Power (CSWaP). These elements are
described in more detail by Martineau [4]. Accuracy and
integrity are elements of comfort and safety, with trustworthy
localization enabling smooth and confident operation. Avail-
ability and continuity leads to utility, reliably bringing the
automated driving service to more roads and more places.
Scalability has implications for infrastructure, where solutions
must be deployed over potentially millions of users. Finally,
CSWaP comes into play in mass market adoption. Success-
ful autonomous vehicle systems must be safe, comfortable,
generally available in their intended operational domain, and
cost-effective to scale their numbers.

There are six levels (0 to 5) of autonomous driving as
defined by SAE [5]. Here, we explore current autonomous
vehicle architectures for SAE Level 2 and SAE Level 4. Both
approaches solve the driving problem hierarchically. Vehicle
routing is performed at a high level using coarse localization
information and is often solved with GNSS and maps. This
layer simplifies the driving problem to road following while
respecting dynamic actors in the environment. Lane selection
is performed at a lower level and requires higher precision
localization. Driving maneuvers such as lane following, lane
changes, and throttle / braking control requires the highest
precision localization. SAE Level 2 systems target assistance
on the highway and are already available to consumers in
vehicles today by Tesla, MobilEye, General Motors (GM),
and others. These rely on commodity cameras complemented
with low resolution radar and ultrasonics to inform steering
and throttle. Localization is based on a GNSS receiver ac-
companied by inertial navigation. In comparison, SAE Level
4 systems in development aim to perform driverless vehicle
operation, and target applications like robo-taxi ride-sharing
services in cities. These typically rely on specialized LiDAR
systems and cameras to localize the vehicle within a lane.
LiDAR localization is typically based on a combination of 3D
structure of the environment and surface reflectivity, providing
localization against a prescanned map. Both LiDAR and
camera approaches rely on local perception sensors to perform
high accuracy localization.

Purely perception-based approaches struggle to solve the
autonomous driving problem completely. Perceptual systems
experience outages from local effects such as weather and
environmental changes. Furthermore, we see the difficulty
these systems experience in addressing the long tail of real-
world scenarios and their susceptibility to being fooled by
unexpected, even adversarial, examples. For instance, Google
(Waymo) famously demonstrated the challenge of correctly
interpreting an upside-down stop sign sticking out of the

backpack of a cyclist [6]. The industry has looked toward
robust localization systems and detailed maps to address these
challenges. Localization and mapping provides environmental
information that might not be visible to perceptual sensors due
to occlusion or sensor range limits. Maps also provide roadway
metadata—such as speed limits—and aids the perception sys-
tem by providing an independent source of truth for roadway
elements—such as signage, lanes, and lane markings. In effect,
the mapping and localization subsystem can be thought of as
providing a prior for the perception and planning systems.

GNSS and automated driving have a long lineage. We
present the progress in both GNSS and automated driving
since the DARPA Grand Challenge in 2005. Both have seen
revolution. Since 2005, GNSS has grown from the U.S. GPS
system to now four fully operational global constellations
including the Russian GLONASS, European Galileo, and Chi-
nese BeiDou. This has substantial implications for availability,
with most users commonly seeing more than thirty naviga-
tion satellites above the horizon. Modernized satellites now
transmit new signals on multiple civil frequencies for much
improved satellite ranging performance. Furthermore, substan-
tial private investment in infrastructure has yielded widespread
networks for GNSS differential corrections. When combined
with highly capable low-cost GNSS receiver chipsets and
modern positioning algorithms, this solution can achieve lane-
level performance on a continental scale at a competitive
CSWaP.

We explore the potential role of high-precision, high-
integrity GNSS in the evolution of widely deployed au-
tonomous driving architectures at SAE Level 2 and SAE Level
4 in achieving the ultimate safety goal of one localization
failure in a billion driven miles per vehicle at scale.

II. RECENT DEVELOPMENTS IN MODERN GNSS

Since the DARPA Grand and Urban Challenges in the mid
2000’s, GNSS has seen substantial improvement. During those
years, GPS for automotive applications was in its infancy.
Undegraded GPS was only opened for civilian use in May
of 2000 [7]. At that time, GPS offered approximately ten
satellites above the horizon transmitting on one civil frequency,
severely limiting capability and requiring specialized high-
cost hardware. DARPA Grand Challenge contenders had to
look towards other systems for precision localization [8],
[9], relying on GNSS only for coarse route following and
initialization.

Today, GNSS is ubiquitous, with four independent satellite
constellations providing global coverage and substantially in-
creasing service availability. Modernized satellites also trans-
mit across multiple civil frequencies for improved service.
Furthermore, several players have invested heavily in ground
monitoring infrastructure, creating networks for GNSS error
correction and fault monitoring over entire continents. With
improved datums and crustal models, this broad coverage
brings access to wide-spread precision location. On the end
user side, mass-market GNSS receiver chips have kept pace,
offering multi-constellation, and now multi-frequency, capa-
bilities. How these elements interact is depicted in Figure 2.



In this section, we present these advancements in more
detail, and show the progress in on-road GNSS performance.
State-of-the-art results indicate that the precision needed for
lane determination has reached production, where the precision
needed for full autonomous driving may be on the horizon.

Fig. 2. The modern GNSS automotive ecosystem. Vehicles equipped with
automotive-grade low CSWaP hardware receives signals from four satellite
constellations across three frequency bands. A sparse ground station network
backed by cloud computing provide error corrections and fault monitoring,
delivered using standardized protocols via cellular networks.

A. Multiple Independent GNSS Constellations

The U.S. GPS was declared fully operational in 1995 with
24 satellites in Medium Earth Orbit (MEO) or an altitude of
20,350 km. When the service was opened for civil use in
2000, only one civil frequency was broadcast. Within a year,
automotive devices giving turn-by-turn driving directions came
to market. At that time, accuracy was around 10 meters [10].
Since then, new satellite navigation systems have been put
into service by other nation-states along with new signals.
These satellite navigation systems have been independently
developed, designed, and operated and hence offer a boost in
the integrity of GNSS navigation systems.

The Russian Global Navigation Satellite System
(GLONASS) became operational in 1996. Like GPS,
GLONASS offered a global service with 24 satellites in
MEO. However, with post-Soviet budgetary constraints,
GLONASS fell into decay with only 10 operational satellites
on average between 1998 and 2006 [11], [12]. With improved

funding, GLONASS regained full capability in 2011 [12].
With this resurgence, many smartphones came equipped
with a GPS + GLONASS compatible receiver in the same
year [13].

China is the third nation to launch navigation satellites,
with the first BeiDou satellite launch in 2000 [14]. As part
of a staged roll out, BeiDou-1 and BeiDou-2 were deployed
as regional systems over China, completed in 2012 [15].
Subsequently, China rapidly deployed the BeiDou-3 global
constellation. BeiDou-3 is nearly complete, with 19 out of
an intended 24 MEO satellites providing global coverage.
The remaining satellites are scheduled for launch with full
operational capability targeted for the end of 2020 [16].

The European Galileo system is nearing completion with
with 22 satellites (+ 4 spares) in orbit out of an intended 24
(+ 6 spares) [17]. The first on-orbit validation satellites were
used to compute Galileo positions in 2013 and the system is
expected to be completed by the end of 2020 [17]. In 2019,
there are already more than 1 billion Galileo-enabled devices
in service [17].

In addition to the four global systems, there are further
regional systems coming online. One example is the Japanese
Quasi-Zenith Satellite System (QZSS). Currently, this consists
of one geostationary satellite along with three satellites placed
in a Highly Elliptical Orbits (HEO) [18]. These HEO satellites
linger at high elevations (near zenith) over Japan, resulting in
one nearly overhead at all times. This aids substantially in
dense urban centers, like Tokyo, where many satellites are
often obstructed by tall buildings. QZSS is particularly in-
teresting, since it transmits correction information to improve
accuracy and provide basic integrity measures of GNSS over
Japan.

The number of navigation satellites in orbit as a function of
time is shown in Figure 3. The jump in recent years reflects
the efforts of an aggressive launch schedule put forth by both
BeiDou and Galileo. Notice the inflection point in 2018, where
the number of satellites available is double that of 2012. Figure
4 shows the effect on the end user. We again see an inflection
point, where soon users will have 25 to 35 satellites in view
at all times. Compare this to GPS-only, where the number is
closer to 10.

All in all, a GPS-only receiver in 2005 relied on less than
30 satellites, while modern multi-constellation receivers draw
on more than 125. The implications are noteworthy. For one,
a significant increase in accuracy and availability. Specifically,
Heng et al. [19] demonstrated that a three-constellation system
using only satellites at least 32 degrees above the horizon
matches the geometric satellite constellation performance of
GPS alone in an open-sky environment. That is, the impact
of obstructions below 32 degrees can easily be mitigated
by using all the available constellations. These obstructions
can be thought of as medium height buildings, implying that
positioning performance can be maintained in more places.

Moreover, the launching of multiple constellations of dozens
of satellites are unlocking integrity techniques that guarantees
the trustworthiness of GNSS outputs: independent constel-
lations can be used to monitor and cross-validate GNSS
constellations and satellites against each other.
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Fig. 3. Number of GNSS satellites in orbit as a function of time. Between
2017 and 2020, China’s BeiDou constellation and the E.U.’s Galileo constel-
lation became operational, adding over 40 navigation satellites available to
end-users. Today modern multi-constellation GNSS receivers have access to
125 satellites, while in 2005, GPS-only receivers could use less than 30.
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Fig. 4. Number of GNSS Satellites visible in San Francisco, CA over a
24 hour period. By 2020, there is always more than 25 satellites visible for
navigation. Four satellites is sufficient for determining position. The additional
satellites increases accuracy, enable fault detection and exclusion between
satellites and constellations, and expands GNSS coverage into areas with
significant sky occlusion.

B. Modern Signals Across Multiple Frequencies

New GNSS satellites broadcast on multiple civil frequen-
cies. Multi-frequency provides signal diversity for robustness
to radio interference and improved atmospheric correction
using techniques such as direct ionospheric delay estimation.
Through international coordination GPS, GLONASS, Galileo,
BeiDou, and QZSS share many of the same frequency bands,
where all operate in L-band (1 – 2 GHz). GPS, Galileo,
BeiDou, and QZSS will all operate at the legacy L1 / E1 /

B1C (1575.42 MHz) as well as the modernized L5 / E5a /
B2a (1176.45 MHz) [20]–[24].

The L5 band offers tenfold more bandwidth than the L1 sig-
nal. GNSS receivers have been modernized to take advantage
of the additional bandwidth—now offering an order of magni-
tude better satellite ranging precision, improved performance
in multi-path environments, protection against narrowband
interference, and an order of magnitude speedup in signal
acquisition from 2 seconds to within 200 milliseconds [25],
[26].

GLONASS operates near L1 and L2, a frequency also
utilized by GPS at 1227.6 MHz. Future GLONASS iterations
plan for additional compatible signals at L1 and L5 [27], [28].
Compared to L2, the L5 band is protected, reserved for safety-
of-life applications in civil aviation. L2 is in a less protected
radio band and can be subject to more sources of interference.
Several devices in the autonomous vehicle world have been
known to cause interference including USB 3.0 connections.
Figure 5 shows the progress in the number of multi-frequency
satellites available as a function of time.
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Fig. 5. Number of GNSS satellites with L1 (E1, B1C), L2, and L5 (E5a,
B2a) civil signals as function of time.

C. Error Correction Algorithms for High Precision GNSS

The ranging signals from GNSS satellites suffer from noise
and biases that degrade the accuracy of the GNSS positioning
solution. The meter-level accuracy of standard GNSS can
be improved to centimeter-level accuracy with appropriate
corrections to the satellite orbit, clock, transmitter and receiver
hardware biases, as well as local atmospheric conditions.
This is sometimes called High Precision GNSS or Precise
GNSS. Similarly, standard GNSS has no provisions to protect
against faults. The lack of integrity guarantees of the standard
GNSS system means large position errors can occur with
no warning. Achieving precise and high integrity positioning
requires mathematical methods to remove biases and noise
as well as monitor systems to protect against faults. These
methods rely on additional information provided on top of the
standalone signal broadcast from the satellite.



Table I shows some of the major techniques employed
in achieving GNSS precision. The first is Real-Time Kine-
matic (RTK) positioning. RTK GNSS achieves centimeter-
level accuracy relative to a local static reference receiver. This
method exploits the insight that when receivers are ‘close,’
the common signal errors cancel when differenced, producing
an accurate 3D vector between the static and roving receiver.
‘Close’ is usually defined as being within 50 km, where errors
accumulate at one part-per-billion (ppb) the baseline distance,
or 1 cm per 10 km distance from the reference receiver.
This approach resolves what is known as the carrier phase
integer ambiguity. Performing integer ambiguity resolution
allows using only the carrier phase of the GNSS signal
for positioning, which provides centimeter accurate satellite
ranging since the L1 carrier wave has a wavelength of only
0.19 m. Scaling up RTK GNSS is challenging since these short
baselines requires a dense monitoring network to cover a large
area and complex handoff procedures for vehicles moving
long distances [29]. Moreover, RTK does not provide integrity
guarantees or integrity outputs that allow building provably
safe systems.

TABLE I
ERROR CORRECTION APPROACHES FOR GNSS.

PPP RTK PPP-RTK

Accuracy 0.30 m 0.02 m 0.10 m
Convergence Time >10 minutes 20 seconds 20 seconds

Coverage Global Regional Continental
Seamless Yes No Yes

The Precise Point Positioning (PPP) [30] technique utilizes
precise orbit and clock corrections layered on top of the raw
GNSS signals. These data products can be estimated with
less than one hundred reference receivers deployed globally
and is delivered from a central service. This technique does
not estimate atmospheric errors, leaving these to be estimated
locally by the user. Estimating atmospheric errors depends on
observing the atmosphere and is known to take many minutes
before a precise position becomes available. Additionally, PPP
does not support integer ambiguity resolution. These factors
typically limit PPP accuracy to the decimeter range. The
advantage of the PPP approach is that it only requires sparse
global network of ground stations to calculate precise clocks
and orbits and can then be applied to any receiver globally.

The availability of denser ground monitoring infrastructure
enables the PPP-RTK method [31]. This hybrid approach
leverages the strengths of both RTK and PPP. Similar to PPP,
it uses a network of ground stations to estimate errors in the
GNSS signal directly, rather than differencing away common-
mode errors like RTK. But similar to RTK, it solves the integer
ambiguity problem to find centimeter-accurate ranges to GNSS
constellations. This approach has recently been shown as
viable with reasonable density of GNSS networks [32]. It
is attractive since it decouples the receiver from the base
station, scaling corrections to continent-level without the chal-
lenges of an RTK approach. The industry has taken to this
approach, and is further building out PPP-RTK networks that

are purpose-built to provide integrity monitoring with formal
risk bounds [33].

On the end user side, there has been substantial recent work
on precision GNSS integrity and using such corrections in
safety-critical applications, particularly in automotive. Gun-
ning et al. [34] indicate that meter-level protection levels are
achievable with formal guarantees on integrity to the level
of 10-7 probability of failure per hour or a reliability of
99.99999%.

D. Ground-based GNSS Monitoring Networks

All three correction approaches from the previous section
rely on additional correction information from ground mon-
itoring networks. Several players are now deploying large-
scale correction services targeted at automotive applications
in North America and Europe including Hexagon [35], Sap-
corda [36], Swift Navigation [37], Trimble [38], and others.
The trend is international, with infrastructure development
also occurring in China with players like Qianxun [39].
Further, there exist state-sponsored precision services, such as
Japan’s QZSS correction service aimed to support automated
driving [40].

E. GNSS Corrections Data Standardization

The corrections data for the aforementioned approaches
have to be delivered to receivers in an understandable format.
Several forms of correction standards have emerged in the
automotive domain that promotes interoperability [36], [41].
Ongoing standardization work commodifies corrections. Preci-
sion localization is rapidly becoming a utility. Much of current
work derives from the State Space Representation (SSR)
originally by Geo++. SSR individually transmits estimates for
each of the major error sources encountered in GNSS, such as
corrections for clock and orbital drift and local ionospheric and
tropospheric corrections. A variant of this approach has been
deployed by QZSS in the Centimeter Level Augmentation
Service (CLAS) [42].

Most relevant to the automotive community, The 3rd Gen-
eration Partnership Project (3GPP) is integrating GNSS cor-
rections data directly into the control plane of the cellular
data network [43], [44]. This integration allows broadcast-
ing standardized correction data to all vehicles rather than
requiring individual point-to-point connections per vehicle.
This approach is lower cost, more reliable, and scales better
than traditional point-to-point connections or satellite-based
distribution.

There are still open questions about the ideal standard. For
example, should the mathematical model underlying the cor-
rection be assumed, or should the model itself be transmitted?
How should spatially-varying information be encoded? How
should fault monitoring be performed, and to what integrity
level? We anticipate significant development in this area.

F. New Datums & Models

A challenge facing precision applications is that the Earth
beneath our feet is constantly moving. In California’s coast,



tectonic shift is as much as 0.10 m a year laterally [45].
Furthermore, tidal forces due to the Moon and Sun deform
the Earth’s surface, in some places through a range of 0.40 m
in just over six hours [46]. The weight of ocean tides causes
an additional periodic load, which, in some regions, results
in a further 0.10 m of deformation [46]. Global datums must
account for the warping of the Earth’s surface to maintain con-
sistency. This has obvious implications for automated driving
and HD maps when using a global reference frame. Fortu-
nately, these variations are addressed by modern map datums
and crustal models such as ITRF2020 [47] and NOAA’s Hor-
izontal Time-Dependent Positioning from 2013 [48], which
can provide decades of stability when used in mapmaking and
localization, even for continent-scale maps.

Smith et al. [49] explains the approach taken by the U.S.
National Oceanic and Atmospheric Administration (NOAA)
whith substantial datum updates being introduced in 2022.
The North American Datum of 1983 (NAD 83) is the current
standard in the U.S. and is based on information about the
Earth’s size and shape from the early 1980s along with survey
data from the same era. Updates are required for consistency
with the latest iteration of the International Terrestrial Refer-
ence Frame, ITRF2014 [50] and soon ITRF2020 [47]. This is
identified as necessary for agreement with future ubiquitous
GNSS positioning capability [51].

G. Mass-Market Automotive GNSS Chipsets

Dual-frequency, mass-market ASIL-certified GNSS chipsets
are now available. Prototype automotive-grade dual-frequency
receivers were also showcased in 2018 [52] and showed
promise in achieving decimeter positioning [53]. Major players
in this space now include STMicroelectronics with its Teseo
APP and Teseo V [52], u-blox with its F9 [54], and Qualcomm
with its Snapdragon [55]. Substantial development has been
exercised with these devices for gains in on-road performance
as will be discussed in the next section. Moreover, many of
these devices are ASIL-capable, enabling a positioning solu-
tion compliant with ISO 26262 automotive safety standards
where several are targeted at ASIL B [37], [52].

III. REVIEW OF ON-ROAD GNSS PERFORMANCE STUDIES

The result of all the aforementioned development is the dra-
matic increase in GNSS performance for automotive use cases
over the last decade. We demonstrate this progression through
select investigations summarized in Table II. Performance has
moved from limited availability of road-level location in 2000,
to better than lane-level localization with good availability in
2019—two orders of magnitude improvement in accuracy and
a threefold increase in availability.

In May of 2000, deactivation of the intentional degradation
of civil GPS signals—known as Selective Availability (SA)—
opened the doors to automotive navigation. In open skies,
performance instantly improved from 100 meters to 5 meters
accuracy [7], [10]. Initial assessment of on-road performance
in December of 2000 indicated that accuracy could support
road determination and hence applications like turn-by-turn
navigation, but availability was limiting the usability of such

systems [10]. In urban environments, positions with an ac-
curacy of better than 10 meters was only available 28% of
driving time, and outages could last for several minutes.

Ten years later, in 2010, on-road GPS availability was inves-
tigated by Pilutti and Wallis [56]. Using a high quality survey-
grade receiver to estimate the best possible GPS performance
on roads, over 186 hours (13,000 km) of driving data on U.S.
roads was collected, comprising a real-world driving profile of
freeways, rural, urban, and suburban roads. This study found
that good GPS satellite geometry (defined as HDOP < 3)
was available 85% of the time. On open roads, availability
could be as high as 94%, compared to urban cores with 65%.
Furthermore, 95% of outage times were found to be < 28
seconds.

By 2017, de Groot et al. [53] demonstrated 0.77 m,
95% horizontal GNSS positioning performance with multi-
frequency, multi-constellation automotive mass-market re-
ceivers in moderately challenging GNSS environments while
employing proprietary correction services from Hexagon. In
open skies, 0.34 m (95%) was achieved, the level required for
lane determination as will be described in Section IV.

In mid 2018, a 30,000 km GNSS data set was collected
primarily on highways in North America [57]. This assessed
GPS + GLONASS performance with a survey-grade receiver
connected to a network providing RTK corrections. The
survey-grade GNSS system achieved 1.05 m, 95% horizontal
positioning performance. Availability of RTK-fixed (integer
ambiguity resolution) solutions were found to be 50% while
RTK-fixed + float solutions—also called Carrier Phase Dif-
ferential GNSS (CDGSS)—were available 64% of the time.
Continuity and outage times were found to be limiting fac-
tors in performance. RTK solutions were fragile, resulting in
extended outage times up to several minutes, though typical
outages were tens of seconds. It should be noted, however, that
the GNSS equipment used in this experiment is representative
of systems two generations behind the current state-of-the-art.

In 2019, Humphreys et al. [58], [59] demonstrated a re-
search prototype achieving 0.14 m, 95% horizontal GNSS
positioning in a light urban scenario. Integer ambiguity fix
availability was 87.5%, with 99% of outages were shorter
than 2 seconds—a gap easily bridged by low-cost Inertial
Measurement Units (IMU). While still at the research stage,
this shows the potential of a future low-cost GNSS-inertial
system in achieving the requirements for autonomous vehicles,
where the needs of urban driving are currently targeted at
0.10 m, 95% for passenger vehicles [2].

A. Performance of a State-of-the-Art Production System

In 2019, Swift Navigation performed an on-road perfor-
mance assessment of a state-of-the-art production GNSS sys-
tem. The setup consisted of commercially available GNSS
positioning software running on a mid-range GNSS receiver
equipped with a survey-grade antenna. Cellular connectivity
provided access to a U.S.-wide GNSS correction service.
Ground truth was provided by a tactical-grade inertial nav-
igation system. This scheme follows the GNSS evaluation
methodology outlined by [57].



TABLE II
SELECT DATA POINTS THAT SHOW ON-ROAD GNSS PERFORMANCE IMPROVEMENTS BETWEEN 2000-2019.

Source
Year

of
Data

Data Set Const. Freq. Receiver
Type

GNSS
Correc-

tions
Env. Accuracy Availability Outage

Times

[10] 2000 2 hours GPS L1 Survey None Urban 10m, 74%,
Lateral 28% 4.7 min,

Worst-Case

[56] 2010 186 hours
(13,000 km) GPS L1 Survey None

Urban,
Suburban,

Rural,
Highway

-

85%, Code
Phase

Position
(HDOP > 3)

28 sec, 95%,
Code Phase

Position
(HDOP > 3)

[53] 2017 1 hour
GPS,
GLO,
Gal

L1, L2 Mass
Market Proprietary Suburban 0.77m, 95%,

Horizontal - -

[57] 2018 355 hours
(30,000 km)

GPS,
GLO L1, L2 Survey Net. RTK Mostly

Highway
1.05m, 95%,
Horizontal

50% Integer
Ambiguity

Fixed

10 sec, 50%,
40 sec, 80%

Fixed

[58] 2019 2 hours GPS,
Gal L1, L2 Research

SDR Net. RTK Urban 0.14m, 95%,
Horizontal

87% Integer
Ambiguity

Fixed

2 sec, 99%,
Fixed

Swift
Navigation 2019 12 hours

(1,312 km)
GPS,
Gal L1, L2 Mid-

Range

Proprietary,
Continent-

Scale

Mostly
Highway

0.35m, 95%,
Horizontal

95%
CDGNSS -

The positioning engine under test was Swift Naviga-
tion’s SkylarkTM, running on a Piksi R© Multi GNSS receiver,
equipped with a Harxon antenna. The GNSS corrections were
provided by Swift Navigation’s Skylark cloud corrections ser-
vice, currently available across the contiguous United States.
Ground truth was derived from a NovAtel SPAN GNSS-
Inertial system [60]. This setup was driven over 1,300 km
from downtown Seattle, WA to downtown San Francisco, CA,
along the U.S. Interstate Freeway system.

The results from this data collection campaign are shown in
Table II. Figure 6 shows the cumulative distribution of position
error. The 95th percentile accuracy performance is 0.35 m,
with an availability of 95%. These results represent state-of-
the-art performance for a commercially available automotive
grade GNSS positioning system. As will be discussed in
Section IV, this level of performance opens the door to lane
determination, and the subsequent unlocking of autonomous
driving maneuvers such as lane changes and oversight over
vision-based lane detection.

IV. EMERGING AUTONOMOUS DRIVING ARCHITECTURES
& THEIR EVOLUTION

Two architectures for autonomous vehicle are emerging.
They differ in their sensors suites, driving capabilities, and
intended Operational Design Domain (ODD). The first pro-
vides SAE Level 2 advanced driver-assistance on limited
access roads in consumer vehicles. State-of-the-art Level 2
systems aim to navigate freeways under human supervision,
which requires selecting and changing into the correct lanes
to traverse interchanges and merges and avoid incorrect exits.
The second provides SAE Level 4 driverless vehicle operation,
such as those in robo-taxi platforms targeted at ride sharing
and transportation of goods, particularly within cities. Level 4
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Fig. 6. The cumulative horizontal position error distribution of a state-of-the-
art production-ready GNSS system on a 1,312 km drive from Seattle, WA to
San Francisco, CA. The positioning engine was Swift Navigation’s Skylark,
running on a Piksi Multi GNSS receiver equipped with a Harxon antenna.
This achieves 0.35 m, 95% accuracy at 95% availability, by incorporating the
modern GNSS elements described in Section II: multiple independent con-
stellations and signals, a sparse continent-wide ground monitoring network,
and a cloud correction service.

systems per definition need to perform all driving maneuvers
while safely sharing the road with vulnerable road users such
as pedestrians and bicyclists. Level 2 systems are on the road
today, such as Tesla’s Autopilot first introduced in 2014 [61]
and GM’s Super Cruise first introduced in 2017 [62]. Level
4 systems are still under development and are the domain of
multiple players including Waymo, Uber, Argo AI, and Cruise
Automation.



A. Autonomous Vehicle Anatomy and The Role of Localization

Architectures for automating the dynamic driving task de-
compose into a few major building blocks: sensing, local-
ization and mapping, perception, prediction, routing, motion
planning, and control. These blocks and their functions are
summarized in Figure 7. In general, these schemes combine
sensors, silicon, and software to understand the local environ-
ment as well as the vehicle’s pose within it in order to plan
and execute driving maneuvers to get to the final destination.
An overview of self-driving vehicle systems and common
practices can be found in [63]–[65].

At the highest level, autonomous vehicles today perform
two primary tasks: (1) build an accurate and useful represen-
tation of the vehicle’s environment, and (2) act based on this
representation.

To build a representation of the environment and the vehi-
cle’s pose in it, all autonomous vehicles use some combination
of perceptual, internal, and external sensors. Perceptual sensors
collect data about the immediate passive environment. Internal
sensors provide raw data about the state of the vehicle,
including its inertial motion and wheel velocities. Addition-
ally, external sensors communicate with (potentially global)
infrastructure, including satellites. Common perceptual sensors
include cameras, radar, ultrasonics, and LiDAR, where internal
sensors include IMUs and wheel speeds, while external sensors
include GNSS. The individual merits of these sensors are
described in [66]–[68].

Perception and scene understanding require detecting, clas-
sifying, and tracking dynamic agents in the world, and lo-
calizing these agents relative to the vehicle. The types of
agents a vehicle must consider depend on the environment
in which the vehicle operates, and may include vehicles,
cyclists, pedestrians, etc. This problem is addressed using
a combination of learned and designed modules that fuses
the data from multiple sensors. An overview can be found
in [66]–[68]. Across the board, every significant player is using
cameras, radar, and ultrasonics to understand the scene, with
some players additionally using LiDAR.

Vehicles act based on the scene representation by solving
for and executing a drivable path. Finding the drivable path
includes finding lane markings, the edge of the drivable
surface, as well as detecting static obstacles and dynamic
agents. Perceptual sensors alone cannot provide the accuracy
required for safety, since systems that rely only on perceptual
sensors can fail to find the true lanes and drivable surface
or, even worse, silently find lanes and paths that do not
exist. Confidently finding and following invalid paths can
cause fatalities and must be guarded against. To address the
limits of perceptual sensors, autonomous driving systems often
combine perception with maps of the environment. Combining
the known information in a map with perceptual information
is accomplished in a variety of ways, including using maps
as priors for perceptual systems, independently checking the
paths found by a perceptual system against the map, and
using perception for in-lane behavior and maps for lane-
level behavior. A survey of motion planning and control for
automated driving is given in [69], [70].

Fig. 7. Most autonomous systems contain sensing along with localization
and mapping subsystems that feed into perception, prediction, and scene
understanding subsystems. These systems build a rich understanding of the en-
vironment around the vehicle. Then, a hierarchical planning system calculates
actions to take. These actions include routing decisions, maneuvers such as
lane changes, and smooth path plans that are executed by a control system.
These high level building blocks are specialized according to the specific
system’s requirements. For example, freeway-only Level 2 systems do not
need to consider potentially hundreds of pedestrians in its near surroundings,
so it can have simpler sensing, perception, and prediction systems.

High-fidelity high-accuracy maps are used to store lane
boundaries and drivable areas, calculate drivable paths es-
pecially beyond perceptual range, and store priors for the
perception system such as where to expect traffic lights.
Indeed, localizing the vehicle in an HD map is sufficient
to solve the driving problem if the environment was static
(provided the localizer and map is of high enough accuracy
and availability). This approach frees the rest of the system
to focus on addressing dynamic agents such as pedestrians,



vehicles, and obstacles such as construction zones. This a-
priori information reduces the burden on real-time perception
in understanding the scene. An overview of maps used in au-
tonomous driving can be found in [71]. Effectively utilizing a
map requires the vehicle to localize within it. This architecture
leads to localization and mapping flowing information into
perception, path planning, and control, and hence having strict
requirements for safety [2].

Localization is performed using a combination of sensors.
Highway driving systems tend to rely on GNSS for localization
to a map, whereas dense urban driving systems tend to rely on
perceptual sensors such as LiDAR. A summary of localization
techniques in autonomous driving can be found in [72]. In
this section, we will focus on the role of GNSS in self-
driving systems, both historically and its potential role in their
evolution.

B. A Brief History of AV Localization & GNSS

At a high level, SAE Level 2 architectures represent a
camera-first approach and SAE Level 4 a LiDAR-first ap-
proach [64]. Both have different philosophies on the role of
GNSS, and approaches were represented in the DARPA Grand
Challenge contenders. Stanford’s Stanley—the winner of the
2005 DARPA Grand Challenge—made use of an OmniSTAR
high-precision correction-enabled GPS + IMU system for
absolute positioning, used for road following [73]. Stanley
only had a relatively inaccurate a-priori map of the terrain and
had to make judgements about the local drivable environment
based on laser range finding, radar, and camera observations.
In the 2007 DARPA Urban Challenge, high accuracy maps
came into play. The approach taken by Boss—the winner
of the challenge and a collaborative effort between Carnegie
Melon University, GM, Caterpillar, Continental, and Intel—
made use of a-priori lane-level maps indicating the presence
and location of lane markings [74]. Boss combined inputs from
map-relative navigation based on lane boundaries detected by
downward-looking SICK LMS lasers and absolute positioning
from an Applanix POSLV 420, which combines GPS, IMU,
and OmniSTAR GPS corrections.

These early systems did not rely on GPS as a primary
localization sensor, as research from the era indicates that
the technology was not mature enough and did not meet the
demands of these prototype platforms [9]. Many problems
were encountered by the technology in 2004 as discussed
by Urmson [8]. This philosophy seems to have continued
in the Level 4 architectures of today. However, in 2004 and
2005, when prototypes for the Grand Challenge were under
development, GPS was still in its infancy as a commercial
product, having been opened to the public from military-
only use a few years earlier in 2000 [7]. Indeed, Urmson
highlighted that “Whereas a positioning accuracy of 0.1 m
sounds sufficient to blindly localize within a lane, these cor-
rections are frequently disrupted. Once disrupted, the signal’s
reacquisition takes approximately a half hour. Thus, relying on
these corrections is not viable for urban driving” [74]. Today
0.35 m accuracy is available with reacquisition measured in
seconds, as discussed in section II. From this legacy, Level 4

systems have evolved to localize by matching LiDAR scans to
maps using a combination of surface reflectivity [9], [75], [76]
and 3D structure, using methods such as the Iterative Closest
Point (ICP) algorithm [77].

The Level 2 camera-first approach, rather than using Li-
DAR map matching, utilizes vision-based lane detection to
localize the vehicle in a lane. This is already in production
with systems including Tesla’s Autopilot, and GM’s Super
Cruise. These systems commonly do not rely on perception to
provide information about which lane the vehicle is moving
in. Perception is used for in-lane control to keep the vehicle
between lane lines [78]. Lane line detection for localization
does not localize to a map. This approach either puts the
burden on perception to correctly read and remember road
signage and take extra caution for occluded or beyond-range
road elements, or, relies on a separate map-based localization
system such as GNSS.

More broadly, the research community has also explored
several forms of Simultaneous Localization and Mapping
(SLAM) based on vision, LiDAR, radar or a combination for
autonomous vehicle applications [72], [79].

C. SAE Level 2

Emerging Level 2 systems on the road today share sev-
eral common elements. Level 2 represents partial automation
where the user must continuously supervise the automated
driving system. Level 2 systems provide lane-keeping, brak-
ing / propulsion control, and in some cases automatic lane
changes. As of 2020, Level 2 systems are largely intended
for operation on limited-access highways and are deployed in
consumer vehicles.

The current challenge in Level 2 systems is automating
a wide range of driving maneuvers such as lane changes,
lane selection, navigating interchanges, anticipating exit lanes,
merging, entering onramps and offramps, in a way that is reli-
ably safe. GNSS-based lane determination is a key technology
in unlocking these abilities.

The common elements of archetypal Level 2 lane following
architectures are captured in Figure 8. Unique to these systems
is that the perception system often finds the current lane
boundary without aid from maps and localization, enabling
basic autonomous functionality anywhere where lane lines
can be detected. A separate localization system then provides
oversight and lane-level map localization on top of lane
detection. Though different automotive Original Equipment
Manufacturers (OEMs) employ slightly different philosophies,
largely speaking these take a camera-first approach. Cameras
detect lane lines which provide input for lateral control. A
survey of lane line detection algorithms can be found in [78].
Radar provides the input for adaptive cruise control (longitudi-
nal control) and hence propulsion and braking. GNSS is used
in global localization and is utilized in conjunction with a map
to provide more capability in terms of function and safety. In
more advanced systems, the perceptual sensors are fused in a
single detector.

The Tesla ‘navigate on autopilot’ feature evolves beyond
lane-following and can change lanes automatically and even



Fig. 8. Common elements of traditional SAE Level 2 automated driving
architectures for lane following. A perception system provides lateral and
longitudinal in-lane localization and detects surrounding vehicles. A dedicated
localization and mapping system provides oversight over the perception
system and enables planning beyond perception limits, such as slowing for
upcoming curves. The desire to perform more complex maneuvers such as
lane changes is evolving this architecture towards unifying precision GNSS
for lane-level localization and camera-based in-lane localization to plan and
execute paths.

drive the car from on-ramp to off-ramp under driver over-
sight. [80], [81]. These vehicles use a GNSS receiver coupled
with a road-level map to perform the navigation function along
with state-of-the-art computer vision to perceive the local
environment including detecting lanes [82]. Control input is
primarily derived from its eight cameras and forward looking
radar. The Tesla neural network approach utilizes its fleet to
collect the data needed for continual refinement of the system
performance, where now more than a billion miles have been
driven on autopilot [83].

The Cadillac Super Cruise approach also utilizes computer
vision and radar, but further employs precision GNSS and
HD maps as major components of its architecture. Together,
the HD map and precision GNSS bring (1) geofencing to
restrict the feature to limited access divided highways, (2) an
extended electronic horizon for situational awareness beyond
perception range, and (3) an independent source of information
for safety by offering redundancy for the cameras [84], [85].
The current implementation uses an L1-only GNSS receiver

augmented by Trimble’s RTX correction service accessed via
a cellular network [84], [86]. This yields a performance of
approximately 1.8 m, 95% [84]. Compare this to typical
standalone automotive GNSS performance which today is
5 m, 95% [57]. The 0.10 m-level HD map is provided by
Ushr who was recently acquired by Dynamic Map Platform.
This LiDAR-based map currently represents the 130,000 miles
(209,000 km) of limited access divided highways in North
America [85], [86]. The precision GNSS currently deployed
in Super Cruise does not yet appear to yield the performance
needed for reliable lane determination. Lane determination is
a substantial next step in unlocking many of the elements
needed for hands-off, eyes-off, full self-driving in highway
environments. Lane determination adds substantial situational
awareness and seems to be the next logical evolutionary step
in Level 2 systems.

1) Lane Determination with GNSS and Maps: What does it
take to achieve lane-determination with GNSS? When using
GNSS-based absolute positioning, the error of the absolute
georeferencing of the HD map containing the lane information
becomes critical. Mathematically, we must account for the
following in achieving lane-determination:

σ2
GNSS + σ2

map = σ2
total (1)

where σGNSS is the standard deviation of the GNSS position,
σmap is that for the HD map, and σtotal is the total budget
between them.

Following the methodology presented in [2], it can be
shown that the lateral position error budget for highway lane
determination is 1.62 m for passenger vehicles in the U.S.
For safe operation, it is recommended by [2] that this position
protect level be maintained to an integrity risk of 10-8 / h, or a
reliability of 5.73σ assuming a Gaussian distribution of errors.
This gives us the following relationship:

5.73 σtotal < 1.62 m (2)

solving for σtotal gives:

σtotal <
1.62 m
5.73

= 0.28 m (3)

If we allow equal error budget for the GNSS and map
georeferencing, σmap = σGNSS = σalloc, then we obtain the
following:

2 σ2
alloc = σ2

total (4)

solving for this allocation for highway geometry gives:

σalloc =
σtotal√

2
=

0.28 m√
2

= 0.20 m (5)

This allows us to calculate an approximate value for 95% ac-
curacy (1.96 σalloc) requirements for both the GNSS position
and map georeferencing to be 1.96 σalloc = 0.39 m. Referring
to Table II, this is very much in line with the state-of-the-art
production-ready system whose results showed 0.35 m, 95%
accuracy.



TABLE III
SUMMARY OF GNSS AND HD MAP ACCURACY REQUIREMENTS FOR LANE DETERMINATION AND IN-LANE POSITIONING BROKEN DOWN BY LATERAL

AND LONGITUDINAL COMPONENTS. THIS ASSUMES (1) THE ALERT LIMITS DERIVED IN [2], (2) THESE ALERT LIMITS ARE REQUIRED TO AN INTEGRITY
RISK OF 10-8 PROBABILITY OF FAILURE PER HOUR (5.73 σtotal RELIABILITY) AS SPECIFIED IN [2], AND (3) THAT GNSS AND THE HD MAP SHARE THE

TOTAL ERROR BUDGET EQUALLY.

Localization + Map GNSS Map Absolute

Error Budget Accuracy, 95% Accuracy, 95%

Positioning Type Road Type (5.73 σtotal) (1.96 σGNSS ) (1.96 σmap)

[m] [m] [m]

Lat. Lon. Lat. Lon. Lat. Lon.

Lane Determination
Highway 1.62 4.30 0.39 1.04 0.39 1.04

Local 1.34 3.19 0.32 0.77 0.32 0.77

In-Lane Positioning
Highway 0.57 1.40 0.14 0.34 0.14 0.34

Local 0.29 0.29 0.07 0.07 0.07 0.07

The required GNSS and HD map absolute accuracy is
summarized in Table III for both lane determination and in-
lane positioning for highway and local city streets. Though in-
lane positioning requirements seem strict, Table II shows that
state-of-the-art research GNSS receivers are already yielding
results capable of doing so for highway geometries near
0.15 m, 95% [58].

With production GNSS systems nearing lane-determination
positioning and research receivers approaching in-lane posi-
tioning for highway road geometries, we require HD maps
with the same accuracy for a viable combined solution.
Making maps with such absolute accuracy is a challenge. The
accuracy limits of HD maps have been explored by Narula et
al. [87] for mobile mapping vehicles equipped with low-cost
standalone GNSS. This work found that with many (>100)
passes of the same road network, 95% accuracy appears to ap-
proach decimeter-level performance, where < 0.50 m accuracy
was found in practice. A variety of techniques have explored
the use of GNSS post-processing in achieving centimeter-
level map accuracies with mobile mapping vehicles [88] while
others make use of oblique aerial imagery and photogramme-
try [89].

Current HD map offerings fall primarily into two camps:
those that put an emphasis on relative accuracy and those
that invest in absolute accuracy. For example, TomTom offers
sub-meter absolute accuracy with 0.15 – 0.20 m relative
accuracy [90], [91], meaning nearby objects in the map are
accurate relative to each other to that degree. Other offerings
from players like Ushr and Sanborn have products capable of
0.10 – 0.15 m absolute accuracy [89], [92]. This is indeed in
the range needed for lane determination, even for tighter local
road geometries, whereby assuming a Gaussian distribution,
0.32 m, 95% is equivalent to 0.16 m, 1σ.

The elements for GNSS-based lane-determination are
present. Looking forward, improvements in GNSS correction
availability and capability will not only enhance vehicle posi-
tioning, they will also feed into HD maps, continually refining
their accuracy. As these both improve, they together drive

toward the requirements for in-lane positioning and hence the
localization needs for full autonomous driving.

2) Interoperability Through Standardization: To achieve
the highest levels of safety and true interoperability, maps
and locations must be standardized. In other words, both
relative and absolute localization should agree with each other.
In the future, V2X will allow sharing situational awareness
data, which will require sharing common references frames,
or datums, between disparate systems. Alignment of global
and relative sensor data unlocks effective information sharing,
opening the door to collaborative and collective operation for
improved safety. The best driving decisions are informed with
the most complete picture of the surroundings. This requires
going beyond the line of sight of vehicle sensors and creating
situational awareness at near-city levels. This necessitates an
environment of collaborative data sharing through broadband
connectivity and V2X. This allows vehicles and infrastructure
to act collectively, greatly improving safety and reducing the
risk of collision. Multiple views of the same scene fill in blind-
spots and add data integrity through overlap. Furthermore, for
HD maps to be commoditized, they too must adhere to a
common datum and standard. GNSS offers the only common
reference for precise position and time information and its
internationally agreed upon datum, the ITRF, is the obvious
choice for the common standard.

Lane-level positioning for Level 2 systems through GNSS
unlocks many self-driving features, protects against certain
failure modes, and increases overall safety. Lane-level po-
sitioning is arguably the key enabling factor in the evo-
lution towards expanded autonomous capability. Feasibility
has been discussed here in detail, where experiments show-
ing GNSS lane-determination have been performed indepen-
dently by others [93]. Lane-determination further unlocks
V2X collaboration [94], another milestone in the expansion
of autonomous capability and increasing situational awareness.
Perhaps most important is the added safety benefit. Through
redundancy, an independent GNSS-based lane-departure and
lane existence warnings can be derived to supervise vision-



based systems [95], [96]. Hence, lane determination further
alleviates some of the autonomous burden from the perception
system which can focus more resources towards the dynamic
agents around the vehicle. Combined, these elements increase
the vehicle capability toward a hands-off, eyes-off automated
experience.

D. SAE Level 4

Level 4 systems under development intend to fully automate
the dynamic driving tasks within its ODD, with no vehicle op-
erator required. This may be geofenced to areas with appropri-
ate supporting infrastructure (e.g. maps and connectivity) and
may further be restricted to certain weather conditions. These
vehicles may no longer require pedals or a steering wheel for
control input by a vehicle operator. Current approaches rely on
a mapping and localization subsystem that is good enough to
solve the driving problem if the environment was identical to
the map, offloading the perception, prediction and parts of the
planning system to focus on dynamic agents and obstacles.
Furthermore, these systems must handle a wide variety and
large number of dynamic agents including sharing the road
with vulnerable road users such as pedestrians and bicyclists.

The various current Level 4 systems share many common el-
ements. These are captured in the archetypal architecture given
in Figure 9. Like Level 2, this includes sensing, perception,
localization, as well as path planning and control. In this case,
the higher level of automation necessitates more sensing to
build more detailed situational awareness, higher quality map
localization, more complex prediction, as well as behavior and
planning that can make progress through complex dynamic
environments. Most notably, we see the inclusion of LiDAR
for localization and perception. In this work, we examine only
the onboard systems—driverless cars will also be supported
by complex cloud-based systems to dispatch, coordinate, and
support fleets of vehicles.

One of the insights shared by most Level 4 systems, is
to simplify the driving problem through high accuracy maps
and localization. An implication is that these Level 4 systems
cannot function if the localization or mapping subsystem is
offline or faulty. Indeed, localization failures in today’s Level
4 vehicles usually trigger an emergency stop. To achieve
driverless operation thus requires a very high reliability lo-
calization system. In this section we speak to how GNSS
can complement LiDAR localization to reach the required
reliability thresholds.

Although current Level 4 systems primarily rely on LiDAR
for localization, these systems incorporate cameras and radar
for both perception and localization. GNSS is not the primary
localization sensor due in part to historical availability chal-
lenges [8]. Some LiDAR localization approaches leverage the
surface reflectivity [9], [75], [76] and others, such as Iterative
Closest Point (ICP) [77], the entire 3D structure. Many utilize
both for robustness.

HD maps in this context contain a localization layer in
addition to layers containing the semantic road information
such as the location of lane lines and traffic signals. This
localization layer consists of the a-priori surface reflectivity

Fig. 9. Common elements of SAE Level 4 automated driving architectures.
Sensor data flows from LiDAR, cameras, radar, IMUs, GNSS, and others to
both the localization and perception system. The localization system tracks
the vehicle’s pose by fusing relative motion from inertial, wheel, and possibly
radar data with map-relative localization. The localization and mapping system
provides enough fidelity to solve the driving problem in static environments,
freeing perception system to focus on detecting changes in the environment,
such as moving actors, traffic light states, and roadwork. A representation of
the environment containing both the surrounding static map from localization
and the dynamic elements from perception is passed to motion planning,
which hierarchically solves for the path the vehicle will follow.

and / or 3D occupancy map or LiDAR point cloud of the
intended driving environment. This results in maps that are
substantially more data intensive, where the bulk of the data
existing in the localization layer.

In nominal conditions, LiDAR-based approaches deliver the
performance required for automated driving. For example, Liu
et al. demonstrated a LiDAR localization system on 1000 km
of road data in 2019 [97]. This yielded < 0.10 m, 95% lateral
and longitudinal positioning accuracy, where it is currently
estimated that 0.10 m, 95% will be required in both lateral
and longitudinal [2].

Although LiDAR-based localization provides high accuracy
and availability, LiDAR is not immune to failure modes
from real world scenarios and environments a vehicle might
encounter. Both LiDAR and computer vision are adversely
affected by inclement weather conditions including fog, rain,
snow, and dust [98]–[102]. Fog, snow, and rain can result in
a 25% reduction of LiDAR detection range [100]. Weather



conditions further result in a reduction of the number of points
per object due to absorption and diffusion by snow flakes,
rain droplets, and dust particulates, resulting in significant
perception impairments [102]. Moreover, the reduced contrast
in intensity is further expected to lead to increased misclas-
sification and detection error [102]. These shortcomings have
been identified at the highest level, where the U.S. Depart-
ment of Transportation has stated the concern that LiDAR is
unable to function accurately once the road is covered with
snow [98]. This is concerning since the U.S. Federal Highway
Administration estimates 70% of U.S. roads to be in snowy
regions [103].

The 3D structure of the environment can also change with
the seasons or with construction, necessitating updates to
the LiDAR localization map [104]. Sparse environments with
limited distinctive structure—like open highways—can also
lead to poor LiDAR localization performance [104]. Further-
more, like all sensors, LiDAR can suffer from occlusions, for
example by large surrounding vehicles or trucks, which block
access to the a-priori information in the map.

To mitigate the shortcomings of LiDAR as a primary local-
ization sensor, it is augmented with computer vision, inertial
measurement, and odometry inputs. A variety of computer
vision approaches to localization have been proposed [105].
Some methods rely on semantic maps [106], global-feature
maps [107], landmarks [108], and 3D LiDAR maps [109],
[110], while others can operate without a map at all [111].
Three-dimensional reconstruction methods typically rely on
multiple view geometry [112] and map-less techniques on
visual-inertial propagation [111]. Odometry inputs are derived
from sources including radar Doppler, visual odometry, Li-
DAR odometry, and wheel speed encoders. Combined, these
sources significantly limit the position drift of IMU-only
inertial navigation.

Precision GNSS is complementary to LiDAR. GNSS’ mi-
crowave signals are unaffected by rain, snow, and fog. GNSS
also performs best in open sparse environments like highways.
Because of this synergy, Baidu’s Apollo framework utilizes a
LiDAR + IMU + precision GNSS localization solution [104].
In test drives with the Baidu system, LiDAR-only localization
reaches the alert limits required for autonomous city driving
(< 0.30 m [2]) only 95% of the time. The inclusion of an
IMU boosts this to 99.99% and with precision GNSS to 100%
within the available test drive data. This is substantial, since
the joint approach strives to address the long tail of localization
errors to better than < 0.30 m, 99.999999% at scale [2] as
required for driverless operation.

The inclusion of precision GNSS in Level 4 localization
has additional benefits and synergies. These include calibra-
tion, integrity, safety, and interoperability. Multi-beam LiDAR
extrinsic calibration estimates the mounting location of the
LiDAR unit(s) relative to the vehicle’s coordinate frame. This
calibration can be accomplished by collecting LiDAR data
as the vehicle moves through a series of known poses. This
pose data may be derived from a number of sources, where
precision GNSS has been identified as one of them [113].

LiDAR-based localization integrity is a relatively new area
of study. Hassani et al. presented a LiDAR / IMU integration

method that enables integrity risk evaluation while account-
ing for incorrect associations between observed and mapped
landmarks as well incorporating LiDAR intensity [114]. In
contrast, GNSS leverages decades of development in aviation
as a high-integrity localization sensor. Such integrity methods,
such as Receiver Autonomous Integrity Monitoring (RAIM)
have been examined on a LiDAR / GNSS fusion solution by
Kanhere and Gao [115]. In general, a combined architecture
leverages the strength of LiDAR, inertial, and GNSS to create
a redundant system with high integrity, striving toward the
safety goals of autonomous driving.

1) Overcoming Occlusion Through Interoperability: An
important future opportunity is interopreability between sys-
tems, which cannot be understated. To make the safest deci-
sions, the full scene, including information out of line of sight
and in every blind spot must be known. Indeed, occlusion
is a major challenge for autonomous vehicles. Overcoming
occlusion is achievable through information sharing via the
coming V2X and 5G infrastructure. As current Level 4 im-
plementations are targeting operation in specific cities and
routes, many utilize ad-hoc coordinate systems which do not
necessarily agree with each other. Eventually, a global standard
must emerge which is ubiquitous, especially as vehicles evolve
to Level 5 automation and take on trips across longer and
longer distances. The obvious choice as the global standard
is that defined by GNSS, namely, the ITRF. GNSS offers the
only source of globally consistent precise position and time to
act as a standard reference for all autonomous systems.

V. CONCLUSION

We have presented the progress in modern GNSS, and the
potential benefits it brings in the evolution of autonomous
driving systems. Specifically, we discussed the virtues of
GNSS as part of autonomous vehicle architectures toward
achieving overall goals in system safety, comfort, utility, and
scalability.

The 2005 DARPA Grand Challenge was an inflection
point in autonomous vehicle development. In early prototypes,
GPS was not adopted as a primary localization sensor due
principally to its limited performance and challenges with
availability. However, in that era, GPS too was in its infancy,
having come online for civil use only a few years early in
2000. Since that time, both autonomous driving and GNSS
have matured as commercial systems. SAE Level 2 systems
are available for highway driver assistance and Level 4 systems
are nearing readiness for ride-sharing and the delivery of goods
within cities. GNSS receivers are now deployed in billions of
consumer and automotive devices, bringing navigation to the
masses and driving down costs.

By 2020, Satellite navigation includes four indepen-
dently operated GNSS constellations: the U.S. GPS, Russian
GLONASS, European Galileo, and Chinese BeiDou, leading
to a substantial boost in availability. Furthermore, satellite
modernization has led to multiple civil frequencies transmit-
ting modern signals, increasing capability in terms of signal
acquisition, atmospheric correction, precise positioning, mul-
tipath mitgation, and spectrum diversity for resilience in the



face of of radio interference. These recent enhancements have
led to significant industry investment in continent-scale GNSS
monitoring networks, which now deliver GNSS corrections at
scale for precise positioning in the automotive market.

For Level 2 ADAS systems, lane-level GNSS localiza-
tion and HD maps can unlock the complex maneuvers re-
quired to safely and confidently move beyond lanekeeping.
ADAS systems equipped with precision GNSS can oversee
the perception system’s outputs, provide high guarantees on
its correctness, and anticipate upcoming road elements to
correctly maneuver into the required lanes for interchanges,
exits, and merges. GNSS technology is ready to take on
this challenge. Production-ready ASIL-rated GNSS chipsets
supporting multiple constellations and multiple frequencies,
connected to continent-scale correction services, delivers lane-
determination accuracy at scale with an availability at over
95% on U.S. freeways. Providing oversight and becoming a
primary sensor for lane-level maneuvers requires safety-of-life
level risk management. Modern GNSS is ready with integrity
guarantees bounding risk to better than 10-7 per hour of faults
beyond 3 meters in position. All of this is achieved at a
CSWaP of < $10, < 0.10 m2 footprint, and < 10 Watt power
consumption.

For Level 4 autonomous driving systems, GNSS have
demonstrated the accuracy required to complement LiDAR-
based localization, providing critical information when Li-
DAR systems experience outages from weather, observability
difficulties in sparse environments with limited distinctive
3D structure, or hardware faults. By comparison, with its
microwave signals, GNSS is unaffected by rain, snow, and fog
and performs best in sparse open environments. In many ways,
GNSS and LiDAR are ideal complementary sensors—GNSS
works particularly well in open-sky environments with few
features, while LiDAR works particularly well in environments
filled with geometric features. Today, RTK GNSS can provide
the accuracy required when close to a reference station but
is not available as a service targeted for automotive. Looking
forward, research GNSS PPP-RTK systems meet the accuracy
required for Level 4 driving and provides a path for abstracting
reference stations into a high reliability system with safety
guarantees. Precision GNSS is ready to become a foundational
pillar of the safety of true driverless vehicles.

Both autonomous vehicle architectures and GNSS are con-
tinuing to evolve. For example, researchers are examining the
possibility of an end-to-end machine learning approach to self-
driving [116]. GNSS can further enable these architectures
for the same reasons as it does current implementations,
since a trusted positioning input empowers robustness and
redundancy. Furthermore, GNSS is continuing to improve
and evolve. New capabilities are being added with new
integrity algorithms, ground monitoring infrastructure, and
user equipment. Furthermore, more satellites are planned by
governments [117] as well as by the commercial sector [118],
[119], where the latter is targeting Low Earth Orbit (LEO).
In the future, we envision ground station networks and LEO
constellations delivering high availability and high accuracy
with safety-of-life level integrity guarantees across the entire
world.
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[105] N. Piasco, D. Sidibé, C. Demonceaux, and V. Gouet-Brunet, “A survey
on Visual-Based Localization: On the benefit of heterogeneous data,”
Pattern Recognition, vol. 74, pp. 90–109, feb 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0031320317303448

[106] Z. Xiao, K. Jiang, S. Xie, T. Wen, C. Yu, and D. Yang, “Monocular
Vehicle Self-localization method based on Compact Semantic Map,”
may 2018. [Online]. Available: http://arxiv.org/abs/1805.06155

[107] O. Pink, “Visual map matching and localization using a global feature
map,” in 2008 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, 2008, pp. 1–7. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4563135

[108] X. Qu, B. Soheilian, and N. Paparoditis, “Landmark
based localization in urban environment,” ISPRS Journal of
Photogrammetry and Remote Sensing, sep 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0924271617302228

[109] T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard, “Monocular
camera localization in 3D LiDAR maps,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). IEEE, oct 2016, pp. 1926–1931. [Online]. Available:
http://ieeexplore.ieee.org/document/7759304/

[110] W. Ryan W. and E. Ryan M., “Visual Localization Within LIDAR
Maps,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014.

[111] L. Heng, B. Choi, Z. Cui, M. Geppert, S. Hu, B. Kuan, P. Liu,
R. Nguyen, Y. C. Yeo, A. Geiger, G. H. Lee, M. Pollefeys, and
T. Sattler, “Project AutoVision: Localization and 3D Scene Perception
for an Autonomous Vehicle with a Multi-Camera System.” Institute of
Electrical and Electronics Engineers (IEEE), aug 2019, pp. 4695–4702.

[112] A. Zisserman and R. Hartley, Multiple View Geometry in Computer
Vision, 2nd ed. New York: Cambridge University Press,, 2003.

[113] J. S. Levinson, “Automatic laser calibration, mapping, and
localization for autonomous vehicles,” Ph.D. dissertation,
Stanford University, Stanford, CA, 2011. [Online]. Available:
https://stacks.stanford.edu/file/druid:zx701jr9713/JesseThesisFinal2-
augmented.pdf

[114] A. Hassani, N. Morris, M. Spenko, and M. Joerger,
“Experimental Integrity Evaluation of Tightly-Integrated IMU/LiDAR
Including Return-Light Intensity Data,” in Proceedings of
the 32nd International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION GNSS+ 2019),
Miami, FL, oct 2019, pp. 2637–2658. [Online]. Available:
https://www.ion.org/publications/abstract.cfm?articleID=17095

[115] A. V. Kanhere and G. X. Gao, “Integrity for GPS/LiDAR fusion
utilizing a RAIM framework,” in Proceedings of the 31st International
Technical Meeting of the Satellite Division of the Institute of Naviga-
tion, ION GNSS+ 2018. Institute of Navigation, 2018, pp. 3145–3155.

[116] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to End Learning for Self-Driving Cars,”
ArXiv, apr 2016. [Online]. Available: http://arxiv.org/abs/1604.07316

[117] L. U. Xiaochun, “Update on BeiDou Navigation Satellite System and
PNT System,” in Stanford Center for Position, Navigation, and Time
(SCPNT) Annual Symposium, Menlo Park, CA, 2019.

[118] T. G. Reid, A. M. Neish, T. Walter, and P. K. Enge, “Broadband LEO
Constellations for Navigation,” Navigation, vol. 65, no. 2, pp. 205–220,
jun 2018. [Online]. Available: http://doi.wiley.com/10.1002/navi.234

[119] D. Lawrence, H. S. Cobb, G. Gutt, M. O’Connor, T. G. R. Reid,
T. Walter, and D. Whelan, “Navigation from LEO: Current capability
and future promise,” GPS World, jul 2017. [Online]. Available:
https://www.gpsworld.com/innovation-navigation-from-leo/

Dr. Niels Joubert is a Senior Research Engineer at
Swift Navigation, where he focuses on automotive
technology strategy including Level 2 architectures,
Dead Reckoning, High Integrity for Safety, and Sim-
ulation. Previously, Niels advised, consulted with
or co-founded 8 Silicon Valley startups including
UAV and enterprise SaaS efforts. He received his
Ph.D. (’17) and M.Sc. (’12) in Computer Science
from Stanford where he worked on using robots
to augment humans in performing creative tasks.
His work has been featured in Engadget, PetaPixel,

Digital Trends Magazine, and SIGGRAPH’s Technical Papers Trailers.

Dr. Tyler G. R. Reid is a co-founder and CTO of
Xona Space Systems, a startup focused on GNSS
augmentation from Low-Earth Orbit. Previously,
Tyler was a Research Engineer on the Controls
and Automated Systems team at Ford Motor Com-
pany working on localization and mapping for au-
tonomous cars. He was also lecturer at Stanford
University in Aeronautics and Astronautics. Tyler
received his Ph.D. (’17) and M.Sc. (’12) in Aero-
nautics and Astronautics from Stanford where he
worked in the GPS Research Lab.

Fergus Noble is co-founder and CTO of Swift
Navigation, where he spearheads futuristic planning
and focuses on technology strategy and architecture.
Prior to Swift, he obtained his BA and MSc degrees
in Physics from the University of Cambridge, where
he also worked on GPS for rocketry. Fergus moved
from the UK to California to work for Joby Energy
on GPS systems and Flight Software teams for
high-altitude wind turbines until co-founding Swift
Navigation in 2012.


